Skip to main content

Table 4 Performance results of ML models on testing dataset

From: Machine learning-driven prediction of medical expenses in triple-vessel PCI patients using feature selection

Testing Dataset

Methods

Number of variables

SMAPE

MAPE

MAE

MASE

RMSE

RSE

MSE

Variables selected by its own algorithm

 LR

58

0.01098

0.01101

0.13619

0.30359

0.18750

0.17684

0.03516

 RF

42

0.01119

0.01117

0.14093

0.27348

0.19081

0.13313

0.03641

 SVR

45

0.01154

0.01157

0.14480

0.32277

0.23219

0.27117

0.05391

 GLMBoost

30

0.00986

0.00984

0.12091

0.36158

0.16888

0.23111

0.02852

 Bayesglm

37

0.01468

0.01466

0.18547

0.35989

0.25358

0.23513

0.06430

 eXGB

28

0.00818

0.00816

0.10084

0.30155

0.15813

0.20264

0.02501

Variables averaged through six ML algorithms

 LR

55

0.01098

0.01100

0.13616

0.30353

0.18741

0.17667

0.03512

 RF

40

0.01129

0.01131

0.13983

0.31170

0.18920

0.18006

0.03580

 SVR

38

0.01076

0.01074

0.13406

0.40091

0.24601

0.49046

0.06052

 GLMBoost

32

0.00856

0.00856

0.10647

0.23733

0.16979

0.14501

0.02883

 Bayesglm

35

0.01118

0.01120

0.13850

0.30874

0.18866

0.17903

0.03559

 eXGB

25

0.00751

0.00755

0.09379

0.20908

0.15552

0.12166

0.02419

  1. Abbreviations: LR Linear regression, RF Random forests, SVR Support vector regression, Bayesglm Bayesian generalized linear models, eXGB eXtreme gradient boosting, MAE Mean absolute error, MSE Mean square error, RMSE Root mean square error, RSE Relative Squared Error, MAPE Mean absolute percentage error, SMAPE Symmetric Mean Absolute Percentage Error, MASE Mean absolute scaled error