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Abstract
Background  Against the backdrop of increasing population aging, the uncertainty and irreversibility of climate 
change have a significant impact on the health and healthcare burden of the elderly. However, it remains uncertain 
whether the multi-tiered medical insurance system disproportionately influences the health impacts of climate risks.

Methods  Using data from the China Health and Retirement Longitudinal Study (CHARLS) from 2011 to 2020, 
matched with urban climate risk variables, we employ a multi-dimensional panel fixed effects model and an 
instrumental variable model to examine the impact of climate risks on the health of the middle-aged and elderly, 
while also investigating the unequal effects of the multi-tiered medical insurance system.

Results  Climate risks significantly worsened the self-reported health of the middle-aged and elderly (β = 0.073, 
P = 0.089), and increased both total medical costs (β = 2.570, P = 0.012) and out-of-pocket expenses (β = 2.652, 
P = 0.003). Notably, the increases in hospitalization costs (β = 0.721, P = 0.004) and out-of-pocket hospitalization 
expenses (β = 0.706, P = 0.036) are particularly prominent. The current multi-tiered medical insurance system results 
in unequal impacts of climate risks on health and medical costs. Specifically, urban employee medical insurance and 
commercial medical insurance effectively improve the health outcomes of elderly individuals affected by climate risks. 
Urban residents’ medical insurance significantly reduces both total medical costs and out-of-pocket expenses for the 
elderly, whereas the new rural cooperative medical insurance shows no significant mitigating effect. Additionally, 
there is no evidence to suggest that the integration of urban and rural resident medical insurance can reduce the 
medical burden on rural elderly populations caused by climate risks. Our long-term projections indicate that, under 
both the SSP245 and SSP585 scenarios, the increase in elderly healthcare costs due to climate risks is irreversible. 
However, restrictive climate policies would yield significant health benefits, potentially reducing per capita medical 
costs for the elderly by nearly 50%.
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Introduction
Since the industrial and post-industrial eras, global eco-
nomic growth has led to high-pollution and high-emis-
sion activities, resulting in increased climate instability 
and a higher frequency of extreme weather events [1]. 
Climate change, characterized primarily by global warm-
ing, and its governance have become central topics of 
current research. On a global scale, by 2020, the aver-
age global temperature had increased by approximately 
1.15  °C compared to the period 1850–1900, with recent 
years accounting for about 15% of the temperature rise 
observed over the past three centuries [2]. Extreme cli-
mate-related disasters are increasing worldwide, with the 
intensity, frequency, and geographic extent of extreme 
events such as heatwaves, floods, droughts, and storms 
rapidly rising. China is a highly sensitive and signifi-
cantly affected region for climate change. In recent years, 
the frequency of extreme weather events has increased, 
affecting wider areas, with greater intensity. Record-
breaking events and unforeseen sudden occurrences have 
also become more common. The frequency of regional 
extreme heavy rainfall, widespread heatwaves, prolonged 
extreme droughts, and high-impact cold waves has risen, 
prompting widespread public concern and ongoing 
discussion.

The health impacts of various extreme climate events 
associated with climate risks are significant, with some 
studies identifying climate risk as the greatest threat to 
global public health [3]. Current research exploring the 
relationship between climate risks and health primar-
ily focuses on the following areas: First, many studies 
use extreme heat as a proxy for climate risk to analyze 
its negative impact on individuals’ physical or mental 
health [4–6]. These studies confirm the causal relation-
ship between extreme heat and individual health by 
defining different temperature ranges or calculating the 
cumulative number of hot days. Among them, the health 
issues of vulnerable groups such as the elderly and infants 
have received particular attention. In the short term, 
studies have shown that increased exposure to higher 
temperature ranges and the rising number of hot days 
significantly drive the probability and mortality rate of 
cardiovascular and other diseases among the elderly in 
the current period [7]. Regarding mental health, studies 
have found that extreme climate events lead the elderly 
to engage in more sedentary activities and experience a 
decline in sleep quality, which increases the likelihood of 
developing mental health issues such as depression and 

anxiety [8]. However, the health risks associated with 
extreme climate events are not limited to the short term. 
In the long run, the sudden occurrence of disasters like 
extreme temperatures has a cumulative and progressive 
effect on health. Studies indicate that, under the dual 
pressures of an aging population and increasing climate 
change uncertainty, the prevalence of chronic diseases 
among the elderly is expected to rise in the future [9]. 
Moreover, the health risks caused by extreme climate 
events may also be transmitted across generations. Stud-
ies have found that exposure to extreme temperatures 
during pregnancy not only worsens the mother’s health 
but also leads to poorer health outcomes for the offspring 
when they reach reproductive age [10, 11].

Second, extreme climate events are driving a con-
tinuous increase in public health expenditures and indi-
vidual healthcare costs. From the perspective of public 
health expenditures, the uncertainties associated with 
extreme climate events may increase short-term emer-
gency medical service costs and long-term maintenance 
expenses for the public sector, thereby putting greater 
pressure on government fiscal balance and sustainabil-
ity [12, 13]. The increasing frequency of extreme climate 
events forces governments at all levels to factor in rising 
climate-related healthcare costs and the implementation 
of adaptive climate policies when preparing fiscal expen-
diture budgets. Moreover, as climate risks evolve, public 
demand for public sector health expenditures continues 
to grow. In terms of individual healthcare costs, studies 
have shown that both extreme heat and extreme cold sig-
nificantly increase healthcare expenses for middle-aged 
and elderly individuals. However, exposure to extreme 
heat results in higher medical costs compared to expo-
sure to extreme cold [14]. Some scholars have also esti-
mated the long-term impact of extreme climate events 
on individuals’ out-of-pocket healthcare expenses. While 
these estimates cover different time periods and geo-
graphic areas, the consistent conclusion is that climate 
risks have a significant long-term effect on out-of-pocket 
costs [10, 15].

It is noteworthy that, although climate risks negatively 
affect individual health and healthcare costs, the cur-
rent multi-tiered medical insurance system may result 
in inequalities. China has established a preliminary 
multi-tiered social medical insurance system, cover-
ing approximately 1.3 billion people. The scope of social 
basic medical insurance includes urban employee basic 
medical insurance (UEMI), urban resident basic medical 

Conclusions  The decentralized multi-tier medical insurance system leads to significant inequality in the health 
impacts of climate risks. Our study emphasizes the critical role of reforming the existing social medical insurance 
system and implementing climate policies to protect the health of elderly populations.
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insurance(URMI), and the new rural cooperative medi-
cal insurance (NRCMI). These basic medical insurance 
schemes cover urban employed populations, urban 
non-employed populations, and rural populations, each 
operating independently with distinct boundaries. Given 
the significant household registration characteristics of 
China’s social basic medical insurance [16, 17], the effec-
tiveness of the multi-tiered insurance system may vary 
considerably. On one hand, in response to climate change 
risks, the multi-tiered medical insurance system may 
provide basic protection for individual health, acting as a 
“safety net” [18]. Such as, the basic medical insurance sys-
tem can effectively improve the basic healthcare rights of 
impoverished and vulnerable groups. On the other hand, 
the current medical insurance system may have a “pro-
rich” effect. In particular, the traditional model, based 
on household registration for insurance enrollment, per 
capita contributions, and unclear coverage boundaries, 
results in issues such as inequitable funding, limited cov-
erage capacity, and significant disparities in benefits [19, 
20]. As a result, differentiated insurance benefits may 
lead to unequal health impacts of climate risks on mid-
dle-aged and elderly populations.

To address the potential inequities caused by the frag-
mented multi-tiered medical insurance system, the Chi-
nese government issued a healthcare reform document 
in 2016, aiming to gradually integrate URMI and the 
NRCMI across the country. The core elements of the 
urban-rural medical insurance integration (URMII) focus 
on unified departmental management, funding policies, 
coverage scope, benefits, insurance catalog, designated 
service providers, and fund management [21, 22]. At the 
same time, the central government has instructed local 
governments at all levels to promptly clarify integration 
plans and deployments, and to develop specific integra-
tion strategies tailored to regional differences. During the 
implementation of integration, governments at all lev-
els typically adopt a “single system with multiple levels” 
approach to insurance contributions and benefit services, 
based on provincial or municipal coordination. The main 
integration goal is to ensure that contribution and ben-
efit levels are similar to those of the NRCMI and URMI 
after integration. There are varying conclusions in cur-
rent research regarding the effects of URMII. Some stud-
ies indicate that the integration of urban-rural medical 
insurance has effectively improved the health levels of 
urban and rural residents, particularly benefiting rural 
populations and residents in western China [23]. Addi-
tionally, research from a provincial coordination perspec-
tive has demonstrated the positive impact of URMII on 
the mobile population [24]. However, some studies have 
found that, after implementing the URMII plan, China 
did not reduce the inequality in healthcare payments 
between urban and rural households in the short term. 

The actual outcomes have fallen short of the expected 
goals [25, 26].

In summary, existing research has discussed the nega-
tive impacts of climate risks on individual health and 
healthcare costs from different perspectives, but there 
is room for further exploration. First, current research 
primarily estimates climate risks using extreme tem-
peratures as a proxy variable, such as using heat indica-
tors to represent extreme weather, while overlooking 
the effects of other types of climate risks. Specifically, in 
China, extreme high-temperature days typically occur in 
the temperate and subtropical regions during the sum-
mer and autumn. Relying solely on heat indicators to 
measure climate risk may introduce spatial and temporal 
biases compared to actual conditions. Second, existing 
research on the threats posed by climate change to public 
health in China has not incorporated the impact of the 
multi-tiered medical insurance system into the analyti-
cal framework. This is particularly important for middle-
aged and elderly populations, for whom participation in 
effective health insurance is a key factor in ensuring basic 
living standards and health outcomes. Differentiated 
medical benefits may have varying moderating effects 
on climate risks, yet this issue has not been addressed in 
existing research. Third, while existing studies have esti-
mated the relationship between extreme temperatures 
and long-term individual healthcare costs, these predic-
tions may significantly underestimate the actual impact 
of climate risks. Additionally, many of these studies use 
relatively short time frames for their estimates.

Based on this, our study uses five waves of data from 
the CHARLS between 2011 and 2020, paired with city-
level indicators, to estimate the impact of climate risks 
on the health and healthcare costs of the middle-aged 
and elderly population. The marginal contributions of 
our research are primarily in the following areas: First, 
we employed a multidimensional composite climate risk 
indicator. Unlike studies that use single-dimensional 
extreme climate indicators, we utilized daily-level tem-
perature and precipitation data at the city level. Based on 
standards published by China’s climate industry, we esti-
mated the annual average number of extreme high-tem-
perature, low-temperature, precipitation, and drought 
days in the sample cities as proxies for the composite 
climate risk indicator. This approach allows our study to 
accurately estimate the actual impact of climate change, 
enriching the research on the relationship between cli-
mate change and health costs. Second, we incorpo-
rate the multi-tiered medical insurance system into our 
research framework. Specifically, we examine whether 
participation in different types of social basic medical 
insurance and the URMII policies have unequal effects 
on mitigating the health and healthcare costs of middle-
aged and elderly populations due to climate risks. These 
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findings contribute to the development of targeted social 
medical insurance reform measures and health protec-
tion strategies for the middle-aged and elderly population 
in the context of both climate change and demographic 
aging, thereby filling a gap in existing research. Finally, we 
provide a long-term forecast of the relationship between 
climate risk changes and healthcare costs for the middle-
aged and elderly population. We use future climate pro-
jections based on different climate policy intensities and 
shared socio- economic scenarios, combined with the 
temperature control targets of future climate policies, to 
estimate the long-term trends in healthcare costs for the 
middle-aged and elderly population caused by climate 
risks.

The structure of this study is as follows: “Theoretical 
analysis” section describes how climate risk affects health 
factors. “Methods and data” section introduces the meth-
ods and data variables used in our research. “Results” 
section presents the empirical results and tests related to 
climate risks and health variables. “The long-term impact 
of climate risk on medical costs” section estimates the 
long-term impact of climate risks on healthcare costs. 
“Discussion” section provides the discussion. “Conclu-
sion” section concludes the study.

Theoretical analysis
By introducing the health production function, we theo-
retically explain how climate risks affect individual health 
and healthcare costs. The health production function 
suggests that an individual’s health outcome (H) depends 
on health inputs (I), external environment (E), and a set 
of individual characteristics (C). Therefore, the health 
outcome can be expressed as Eq. (1):

	 H = f (I, E, C)� (1)

In this context, f represents the health production func-
tion, which satisfies the conditions of ∂H/∂I > 0, ∂H/∂E > 
0. Assuming that R denotes climate risks, such as extreme 
heat or heavy rainfall, which can disrupt the external 
environment E, the health outcome H can be expressed 
as Eq. (2):

	 H = f (I, E (R) , C)� (2)

In this case, the external environment E is a function of 
climate risk R. By taking the partial derivative of Eq.  (2) 
with respect to R, we obtain:

	 ∂H/∂R = ∂f/∂E · ∂E/∂R� (3)

Since climate risk R negatively impacts the external envi-
ronment E, leading to ∂E/∂R < 0, which further results in 
∂H/∂R < 0, it can be concluded that an increase in climate 

risk will reduce individual health outcomes. Consider-
ing healthcare cost investment, as individuals aim to 
maximize their health level or minimize health losses, the 
health cost function C(I) is incorporated into the model:

	 min C (I) + L [H (I, E (R) , C)]� (4)

In this case, C(I) represents the cost function of health 
investment, which satisfies ∂C/∂X > 0, while L(H) is the util-
ity function of health loss, which satisfies ∂L/∂H < 0. By con-
sidering the first-order condition, we obtain:

	 ∂C/∂I = −∂L/∂H · ∂H/∂I � (5)

When climate risk R increases, individual health deterio-
rates. As a response, individuals will increase their invest-
ment in health inputs I to mitigate health damage.

	 ∂I/∂R = −
(
∂2L/∂H2 · ∂H/∂R

)
/

(
∂2C/∂I2)

� (6)

When health levels decline, utility decreases, leading to 
∂2L/∂H2 < 0. Since ∂H/∂R > 0, we can derive:

	 ∂I/∂R > 0� (7)

Based on Eq.  (7), when climate risk R increases, indi-
viduals will increase their health investment I to reduce 
health losses. Further considering health costs (HC), it 
consists of two components:

	 HC = C (I (R)) + D (H (R))� (8)

Here, C(I(R)) represents the medical costs caused by cli-
mate risks, while D(H(R)) reflects the costs associated 
with early retirement and other expenses due to dete-
riorating health. By taking the derivative of Eq.  (8) with 
respect to R, we obtain:

	∂HC/∂R = ∂C/∂I · ∂I/∂R + ∂D/∂H · ∂H/∂R� (9)

In this case, ∂I/∂R > 0, and ∂D/∂H > 0. We can derive:

	 ∂HC/∂R > 0� (10)

According to Eq.  (10), when climate risk R increases, 
individual healthcare costs will rise. Considering the indi-
vidual’s health utility U over the entire life cycle, health 
investment H is incorporated into the life-cycle health 
utility function:

	
U =

∫ T

0
e−ptu (H( X, E (R) , C )) dt� (11)
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Here, U represents the individual’s health utility over the 
entire life cycle, p is the discount rate, and u (H) is the 
health utility function. By taking the derivative of Eq. (11) 
with respect to R, we obtain:

	
dU/dR =

∫ T

0
e−pt (∂U/∂H · ∂H/∂R) dt < 0� (12)

Therefore, when climate risk R increases, an individual’s 
health utility over the entire life cycle will decrease.

Methods and data
Data sources
The data consists of two parts. The first part of the data 
includes micro-level data on individual health status and 
healthcare costs, derived from the CHARLS, conducted 
jointly by Wuhan University and Peking University from 
2011 to 2020. The choice of CHARLS is based on two 
reasons: First, CHARLS collects high-quality micro-level 
data on households and individuals aged 45 and above in 
China, including key data required for our study, such as 
individual healthcare expenditures, medical insurance 
participation, and health status. Second, CHARLS allows 
matching data at the city level rather than the provincial 
level, enabling us to pair it with regional characteristics 
such as climate risks and economic development. This 
enhances the reliability of our research.

The second part of the data includes city-level cli-
mate and socio-economic indicators. The temperature 
and precipitation data used to calculate climate risk 
are sourced from daily observational data provided by 
the China National Meteorological Science Data Cen-
ter (CNMSDC), with a spatial resolution of 0.5 × 0.5. 
We calculated a composite climate risk index based on 
the defined thresholds for various climate risks. Indica-
tors such as economic development level and industrial 
characteristics are derived from the urban statistical 
yearbook. Additionally, we use per capita carbon emis-
sion intensity as an instrumental variable for the climate 
risk index to address the endogeneity issue. The raw car-
bon emission data is sourced from the annual indicators 
provided by the Global Atmospheric Research Emissions 
Database (EDGAR), formatted as raster data with a spa-
tial resolution of 0.1 × 0.1. We used Arcgis to match this 
data with the sample city locations.

Statistical analysis
The panel two-way fixed effects model is an effective 
method for estimating treatment effects with multi- indi-
vidual, multi-time data. The time fixed effects account 
for shocks that vary over time but not across individu-
als, while individual fixed effects capture characteristics 
that vary across individuals but not over time [27]. Based 
on existing research, we establish a panel two-way fixed 

effects model to estimate the impact of climate risk on 
individual health and costs, as shown in Eq. (13):

	 ln Heait = β0 + β1 ln CRit +
∑

Xit + µit + γit + εit�(13)

where, i represents the individual, and t represents time; 
Hea refers to a set of dependent variables, including 
self-reported health, total medical expenses, and out-
of-pocket expenses; CR is the climate risk index; and X 
represents a set of control variables, including individual, 
household, and regional characteristics. β1 is the coeffi-
cient to be estimated. Additionally, it is considered that 
the cost of individual health maintenance may be related 
to economic factors, with regions experiencing better 
economic development generally having higher health 
maintenance costs. Furthermore, studies suggest that the 
industries driving economic growth are related to carbon 
emissions activities, which could lead to increased car-
bon emissions, thereby exacerbating climate risks [28]. 
Therefore, in this study, there may be a reverse causality 
between climate risk and health costs, necessitating the 
consideration of endogeneity issues. Drawing on existing 
research, we use climate policy uncertainty as an instru-
ment for urban climate risk [29] to perform robustness 
checks. The instrumental variable regression model is 
given by the following equation:

	 ln CRit = α0 + α1IVit +
∑

Xit + µit + γit + εit�(14)

	 ln Heait = θ0 + θ1 ln CRiv
it +

∑
Xit + µit + γit + εit�(15)

where, IV represents the instrument for climate risk; 
α 1 the coefficient from the first-stage regression; θ 1
is the coefficient from the second-stage regression. To 
investigate whether the multi-tiered medical insurance 
system effectively moderates the impact of climate risk 
on self-reported health and medical expenses, we estab-
lish a moderation model to examine whether differenti-
ated insurance participation plays a moderating role. The 
moderation effect model is shown in Eq. (16):

	

ln Heait =β0 + β1 ln CRit + β1 ln CRitInsit

+
∑

Xit + µit + γit + εit
� (16)

where, Ins represents a set of moderating variables, 
including participation in UEMI, URMI, NRCMI, com-
mercial medical insurance (CMI), and whether the city 
has implemented the URMII policy.

Variable selection
The dependent variables are health status and medical 
expenses. Health status is measured using self-reported 
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health (self_hea), while medical expenses are repre-
sented by total medical costs (lncost) and out-of-pocket 
expenses (lnselfcost). The self-reported health status is 
derived from the individual health survey in CHARLS. 
Respondents answer using categories such as “very good,” 
“good,” “fair,” “poor,” and “very poor,” with scores ranging 
from 1 to 5. A higher score indicates worse self-reported 
health. Medical expenses are represented by total medi-
cal costs and out-of-pocket costs. Specifically, total medi-
cal costs are the sum of inpatient and outpatient costs, 
while out-of-pocket costs include the sum of inpatient 
and outpatient out-of-pocket expenses. The data on med-
ical expenses related to inpatient and outpatient services 
come from the micro-survey of CHARLS.

The independent variable is the climate risk index 
(lnCR). Existing research indicates that climate risk pri-
marily manifests as the uncertainty and shocks caused 
by various extreme climate events. In line with previous 
studies, we use the annual number of days of four types 
of extreme climate events—extreme high temperatures, 
extreme low temperatures, extreme precipitation, and 
extreme drought-to represent the urban climate risk 
index. Specifically, following existing research, we stan-
dardize the annual occurrence days of the four extreme 
climate events and calculate their average as the climate 
risk index. For defining the thresholds of different types 
of extreme climate events, we referred to the standards 
issued by China’s climate sector. We use percentiles to 
determine the extreme thresholds. This involves select-
ing the extreme and second extreme values of the corre-
sponding indicators within the climate reference period, 
constructing a sample sequence, and using the 5th and 
95th percentiles as the extreme thresholds. Addition-
ally, compared to methods that define threshold ranges, 
using the annual occurrence days as a climate risk mea-
sure has the advantage of incorporating the impacts of 
different types of climate events into the same model for 

estimation. The calculation process for the climate risk 
index is shown in the following formula (17):

	
CRit =

( 365∑
j=1

HTjit +
365∑
j=1

LTjit +
365∑
j=1

EPjit +
365∑
j=1

EDjit

)
/4�(17)

where, HTit and LTit represent the number of extreme 
high and low temperature days, respectively, in city i in 
year t; EPit and EDit represent the number of extreme 
precipitation and drought days, respectively, in city i in 
year t; To account for potential biases in the calculation of 
these indicators, we further use the cumulative number 
of extreme climate event days for different types of cli-
mate risks as alternative variables for robustness checks. 
As shown in Fig. 1, the climate risk index for the sample 
cities from 2011 to 2020 generally increased under dif-
ferent measurement methods, indicating that the climate 
risk in cities has been gradually increasing during the 
study period.

The control variables include individual characteris-
tics, family characteristics, and socio-economic traits of 
the region to which the respondent belongs. Individual 
characteristics include gender, marital status (married), 
retirement status (retire), education level (edu), chronic 
disease status (chr), age, life satisfaction (sat), BMI 
(bmi), and sleep duration (sleep); Family characteristics 
include per-capita income(lnincome), household size 
(size), household registration type (reg); Socio-economic 
characteristics include economic development level 
and industrial structure, represented by per capita GDP 
(pregdp) and the share of the tertiary sector in total out-
put (ind_str).

The moderating variables include whether the indi-
vidual participates in UEMI, URMI, NRCMI, CMI, and 
whether they have experienced the URMII policies.

Table  1 reports the descriptive statistics for the full 
sample, urban sample, and rural sample. All climate risk 
and regional characteristic indicators in the study are 

Fig. 1  Change of climate risk in sample cities during 2011–2020 (L: ∆CR, R: ∆CRT)
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matched based on city codes and the CHARLS data. The 
core variables of interest are individual health status and 
medical expenditures. After excluding outliers and miss-
ing values, the final balanced panel dataset consists of 
3,135 samples. According to Table  1, the average total 
medical expenses and out-of-pocket costs for rural resi-
dents are slightly higher than those of urban residents. 
The overall mean self-assessed health score for the full 
sample is 2.98 (close to 3), indicating that the general 
health status is moderate, with rural residents reporting 
slightly better self-assessed health than urban residents. 
Additionally, the gender distribution is 46.10% male 
and 53.90% female. The proportions of urban and rural 
households are 67.77% and 32.23%, respectively. The pro-
portion of married individuals is 77.43%, while 12.59% 
are retired and 53.5% are aged 60 or older. Of the sam-
ple, 90.54% are enrolled in public basic health insurance, 

and only 5.53% have purchased commercial medical 
insurance.

Results
The impact of climate risks on the health and healthcare 
costs
After controlling for individual, household, and regional 
characteristics, as well as implementing a two-way fixed 
effects model, the baseline regression results are pre-
sented in (Table 2). The results indicate that, with regard 
to self-reported health, climate risks significantly exacer-
bate the respondents’ health conditions (self_hea), with 
an estimated coefficient of 0.073 (significant at the 10% 
level). This suggests that as climate risks increase, the 
health damages caused to the middle-aged and elderly 
population by extreme weather events become more 
severe. Regarding healthcare costs, the results show that 

Table 2  The impact of climate risks on individual health and cost of healthcare
Variables self_hea lncost lnselfcost

(1) (2) (3) (4) (5) (6)
lnCR 0.046 0.073* 1.545*** 2.570** 1.345*** 2.652***

(0.033) (0.043) (0.531) (0.995) (0.468) (0.852)
lnincome −0.092 −1.117 −0.451

(0.087) (2.082) (1.685)
married 0.112** 1.704** 1.688***

(0.047) (0.846) (0.549)
retire −0.007 −0.277 0.436

(0.057) (0.738) (0.823)
sat 0.132*** −0.115 −0.146

(0.014) (0.211) (0.282)
lnage −0.897 66.54 71.47*

(1.426) (44.74) (41.51)
edu −0.034 −7.730*** −6.710***

(0.068) (0.603) (1.016)
reg 0.029 −0.124 −0.127

(0.035) (0.119) (0.144)
chr −0.109*** −1.823** −0.715

(0.035) (0.850) (0.683)
lnbmi 0.087 3.145 −2.883

(0.125) (5.181) (4.576)
sleep 0.028*** −0.115 −0.121

(0.005) (0.190) (0.209)
size −0.007 0.051 0.032

(0.007) (0.142) (0.111)
gender −0.403 −1.302 −1.503

(0.392) (1.278) (2.011)
constant 2.811*** 6.526 11.74*** −245.5* 10.74*** −257.9**

(0.116) (5.929) (1.812) (118.4) (1.596) (175.6)
con_s No Yes No Yes No Yes
year Yes Yes Yes Yes Yes Yes
ind_l Yes Yes Yes Yes Yes Yes
obs 3,095 3,095 3,095 3,095 3,135 3,135
R2 0.003 0.071 0.046 0.310 0.034 0.319
*, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively. The values in parentheses are clustered robust standard errors at the city level
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climate risks significantly increase the costs associated 
with health maintenance. Specifically, when climate risk 
increases by 1%, individuals’ total medical costs (lncost) 
and out-of-pocket expenses (lnselfcost) will rise by 
2.570% and 2.652%, respectively. It can be observed that 
the increase in urban climate risk significantly exacer-
bates the non-health conditions and healthcare costs of 
the middle-aged and elderly population, which is con-
sistent with existing research findings. Previous studies 
have shown that the disaster impacts of climate risks are 
uncertain and difficult to effectively prevent, significantly 
increasing the health damages and healthcare costs indi-
viduals are exposed to [14, 30].

A possible explanation for this is that, on the one hand, 
the increase in climate risks directly threatens and harms 
individuals’ physical or mental health, especially among 
vulnerable groups such as the elderly, who are more sen-
sitive to external environmental shocks. Studies have 
shown that the occurrence of extreme heat and other 
climate events is significantly positively correlated with 
the incidence of underlying diseases and the increased 
mortality risk among the elderly population [31]. Addi-
tionally, climate risks may reduce outdoor activities and 
social interactions, which can increase the likelihood of 
psychological conditions such as anxiety and depression 
in older adults [32]. On the other hand, climate risks are 
associated with higher medical costs. Sudden extreme 
climate events often lead to an increase in defensive 
behaviors and hospitalization rates, which consequently 
raises healthcare costs and health expenditures for the 
middle-aged and elderly population [15].

Based on the above findings, we decompose the total 
medical costs and out-of-pocket costs for the middle-
aged and elderly population. The total costs include inpa-
tient (lninc_cost) and outpatient costs (lnout_cost), while 
out-of-pocket costs include inpatient (lnself_inp) and 
outpatient self-paid expenses (lnself_out). Table  3 pres-
ents the results of the disaggregated regressions. It can be 
seen that climate risk leads to a 0.721% increase in lninc_
cost (significant at the 1% level), and a 0.706% increase in 

lnself_inp (significant at the 5% level). As for outpatient 
costs, the estimated results for both lnout_cost and lnself_
out are not statistically significant, indicating that climate 
risk does not significantly increase the medical expenses 
for the elderly in outpatient settings. Furthermore, we 
examine whether climate risk has differential impacts on 
inpatient and outpatient behaviors. The results show that 
the number of inpatient days (lnnum_inp) for the elderly 
significantly increases by 0.238% (significant at the 10% 
level), while there is no significant effect on the num-
ber of outpatient visits (lnnum_out) in the same period. 
These findings suggest that the health damage caused by 
climate risk for the elderly may be more likely to translate 
into direct physiological harm, thereby increasing medi-
cal costs associated with inpatient care. This contrasts 
with studies that consider only extreme heat as a proxy 
for climate risk, as the health damage caused by extreme 
heat may have a gradual cumulative effect, unlike sudden 
disasters such as extreme precipitation, which typically 
cause more immediate and acute harm [33, 34].

Robustness test
Table  4 reports the results of four robustness checks. 
First, the measure of urban climate risk is altered. This 
study uses the cumulative number of annual extreme 
climate events as a substitute for the average measure, 
addressing potential biases in the latter. Second, regional 
characteristic variables are included. Building on the 
baseline regression results, we examine the impact of 
urban economic development and industrial structure on 
self-rated health and healthcare costs for the middle-aged 
and elderly population. Third, we conduct an instrumen-
tal variable regression. The climate policy uncertainty is 
used as an instrumental variable for urban climate risk, 
overcoming potential bidirectional causality that could 
lead to estimation bias between the explanatory and out-
come variables. Since the number of instrumental vari-
ables is equal to the number of endogenous variables, the 
issue of over-identification does not arise. We perform 
tests for weak instruments and under-identification. The 

Table 3  Effects of climate risks on inpatient and outpatient costs
Variables lninc_cost lnself_inp lnnum_inp lnout_cost lnself_out lnnum_out

(7) (8) (9) (10) (11) (12)
lnCR 0.721*** 0.706** 0.238* 0.027 0.054 0.043

(0.246) (0.344) (0.134) (0.291) (0.284) (0.230)
constant 3.120 −79.04 −13.30 −14.81 −27.68 −32.57

(54.88) ( 67.15) (28.88) (47.75) (52.93) (52.72)
con_s Yes Yes Yes Yes Yes Yes
year Yes Yes Yes Yes Yes Yes
ind_l Yes Yes Yes Yes Yes Yes
obs 3,013 3,135 3,135 3105 3,135 3,135
R2 0.114 0.074 0.042 0.071 0.057 0.062
*, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively. The values in parentheses are clustered robust standard errors at the city level
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results in Table 4 show that the F-statistics for the first-
stage regressions are all greater than 10, and the Cragg-
Donald Wald F-statistics exceed the critical value at the 
10% significance level. This indicates a strong correlation 
between climate policy uncertainty and climate risk. The 
p-values of the LM statistic are all 0.000, leading to the 
rejection of the under-identification hypothesis. There-
fore, our instrumental variables are identified. Fourth, 
we consider individual-level clustered robust standard 
errors and regional fixed effects. We perform the test 
using clustered robust standard errors at the individual 
level, which assume that health variables for individual 
samples exhibit autocorrelation only over time. Addition-
ally, based on the regional division standards set by the 
National Bureau of Statistics of China, we categorize the 
sample regions into East China, Central China, North-
east, Northwest, North China, Southwest, and South 
China, taking into account factors such as geographic 
location, climate conditions, and economic development. 
This generates regional fixed effects to control for the 
impact of unchanging regional characteristics on individ-
ual health across all time periods. As shown in Table 4, 
even when these factors are considered, the estimation 
results remain significant. The results confirming the 
robustness and reliability of the estimates from Eq. (13).

The moderating effect of the multi-tier health insurance 
system
To examine whether changes in self-assessed health and 
healthcare costs among the elderly due to climate risks 
are influenced by participation in different types of medi-
cal insurance, this study analyzes the interaction between 
differentiated insurance participation and climate risk. 
Specifically, we considered the impact of three types of 
public medical insurance and commercial insurance: 
UEMI, URMI, NRCMI, and CMI. Figure  2 presents the 
moderating effects of different types of medical insur-
ance. The results show (Panel a) that the interaction 
term between UEMI and climate risk has a coefficient of 
−0.015 (significant at the 10% level), indicating that par-
ticipation in UEMI helps reduce the health damages (self_
hea) caused by climate risks for the elderly. However, 
for both total medical costs (lncost) and out-of- pocket 
expenses (lnselfcost), the interaction term coefficients are 
not significant, suggesting that UEMI participation does 
not significantly reduce healthcare expenditures resulting 
from climate risks.

Regarding URMI, the results in Fig. 2 (Panel b) indicate 
that the interaction term between URMI and climate risk 
has no significant effect on the self-assessed health of the 
elderly, as the coefficient is not statistically significant. 

Table 4  Robustness test
Variables Proxy variable Regional variable

self_hea lncost lnselfcost self_hea lncost lnselfcost
lnCR 0.083** 2.735*** 2.700*** 0.084** 2.591*** 2.611***

(0.041) (0.974) (0.768) (0.042) (0.917) (0.949)
constant 4.275 −420.2** −383.1** 4.004 −282.3 −249.5

(5.470) (202.7) ( 206.8) (6.754) (170.1) (163.9)
con_s Yes Yes Yes Yes Yes Yes
year Yes Yes Yes Yes Yes Yes
ind_l Yes Yes Yes Yes Yes Yes
R2 0.091 0.381 0.362 0.115 0.330 0.323
obs 3,135 3,095 3,135 3,135 3,095 3,135

Instrumental variable Individual cluster
self_hea lncost lnselfcost self_hea lncost lnselfcost

lnCR 0.356*** 5.514*** 4.633*** 0.093** 2.792*** 2.913***

(0.120) (1.186) (1.142) (0.037) (0.906) (0.898)
constant 2.562** 29.71*** 38.20** 5.324 −417.3*** −440.2***

(0.573) (5.457) (16.19) (6.131) (171.6) (160.9)
con_s Yes Yes Yes Yes Yes Yes
year Yes Yes Yes Yes Yes Yes
ind_l Yes Yes Yes Yes Yes Yes
reg_l No No No Yes Yes Yes
F 655.5 51.14 44.93
C_D Wald 692.8 58.01 51.28
LM (p) 0.000 0.000 0.000
R2 0.047 0.081 0.231 0.082 0.350 0.348
obs 3,135 3,095 3,135 3,135 3,095 3,135
*, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively. The values in parentheses are clustered robust standard errors at the city level. For the 
instrumental variable regression, we report only the results from the second stage
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However, it significantly reduces the total medical costs 
(lncost) and out-of-pocket expenses (lnselfcost) caused by 
climate risk, with regression coefficients of −0.485 (sig-
nificant at the 1% level) and − 0.268 (significant at the 5% 
level), respectively. This result suggests that although par-
ticipation in URMI does not alleviate the health damage 
caused by climate risks, it plays a positive role in reduc-
ing healthcare costs associated with climate risks. As 
for NRCMI, the results in Fig. 2 (Panel c) show that the 
interaction term between NRCMI and climate risk has 
no significant impact on both self-assessed health (self_
hea) and medical costs for the elderly, with the regression 
coefficients being statistically insignificant. This suggests 
that participation in NRCMI has no noticeable effect on 
mitigating the health damage or healthcare costs result-
ing from climate risk.

Additionally, unlike public social insurance, we exam-
ine whether participation in CMI moderates the health 
and cost impacts of climate risk. According to the regres-
sion results in Fig.  2 (Panel d), the interaction term 
between CMI and climate risk has a significant negative 
coefficient of −0.029 (at the 5% level) for self-assessed 

health (self_hea), indicating that purchasing CMI effec-
tively mitigates the health damage caused by climate 
risks. However, for total medical costs (lncost) and out-
of-pocket expenses (lnselfcost), the interaction term coef-
ficients are not significant, suggesting that purchasing 
CMI does not reduce the medical expenses incurred by 
the elderly due to climate risk.

Based on the above findings, our results suggest that 
the multi-tiered healthcare insurance system has a sig-
nificant differential impact on alleviating the health and 
medical costs of middle-aged and elderly populations 
affected by climate risk. Both social basic medical insur-
ance and commercial insurance exhibit a “pro-wealthy” 
rather than “pro-poor” characteristic, which aligns with 
similar findings in existing literature [35, 36]. Specifically, 
participation in UEMI and CMI effectively mitigated 
the health damage caused by climate risk, improving the 
self-assessed health (self_hea) of the elderly. URMI, on 
the other hand, significantly reduced total medical costs 
(lncost) and out-of-pocket expenses (lnselfcost) for the 
elderly, while NRCMI had no significant effect on reduc-
ing these costs associated with climate risk.

Fig. 2  The unequal impact of a multi-tier healthcare system
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Further analysis is conducted using Eq. (16) to examine 
whether the IURMI can eliminate the inequality caused 
by multi-tiered insurance participation. Considering the 
policy implementation goals, as previously mentioned, 
various provinces and cities have gradually introduced 
corresponding supporting measures and specific integra-
tion plans since the integration objective was proposed. 
These measures aim to reduce the disparity between 
urban basic healthcare insurance and the new rural 
cooperative medical system, improve healthcare service 
efficiency, and expand the scope of insurance reimburse-
ments and covered services. We define the policy treat-
ment variable based on the specific implementation 
timeline of URMII schemes in each city or province for 
examination. To investigate whether URMII can effec-
tively mitigate the negative impacts of climate risks on 
middle-aged and elderly individuals with rural household 
registration, we analyze the rural household registration 
sample.

In Table  5, the interaction term between the policy 
treatment variable and climate risk (lnCR x URMII) is not 
statistically significant across different regression results. 
This indicates that, it has not alleviated the inequality 
inherent in the multi-tiered healthcare insurance sys-
tem. One possible reason is that a significant proportion 
of the elderly rural population is either self-employed or 
unemployed, and their labor capacity rapidly declines 
with age, leading to greater health deterioration [37]. 
While the URMII has improved rural residents’ access 
to medical services, the incidence of disease significantly 
increases with age due to the greater health deteriora-
tion in elderly populations. This is particularly true for 
elderly rural residents, who are highly vulnerable to nega-
tive impacts from climate risks and other environmental 
changes [38]. This significantly counteracts the potential 
alleviating effect of the URMII on the medical burdens 
of elderly rural populations. Secondly, the differences 
in economic development, medical resource allocation, 
population aging structure, and variations in healthcare 

policies between urban and rural areas have led to differ-
ences in the definitions, operational models, reimburse-
ment scopes, and insurance catalogs under the unified 
healthcare system. Based on the above findings, health 
insurance integration has not reduced the health costs 
caused by climate risks for middle-aged and older adults 
with rural household registration.

The long-term impact of climate risk on medical 
costs
With the dual challenges of escalating global climate 
risks and China’s aging population, it is foreseeable that 
an increasing number of elderly individuals will face 
the threats posed by climate risks in the future [39]. As 
a result, we have estimated the long-term impact of cli-
mate risks on healthcare costs for the elderly population. 
We employed a climate model along with two scenarios 
based on shared socioeconomic pathways, provided by 
the NASN Earth Exchange Global Daily Downscaled Pro-
jections (NEX-GDDP-CMIP6), to estimate the dynamic 
changes in future climate risks for cities. The CMIP6 
dataset includes retrospective climate forecast data from 
1950 to 2014 and future daily climate projections from 
2015 to 2100, covering indicators such as near-surface 
average temperature, precipitation, and wind speed, all 
with a spatial resolution of 0.25 × 0.25 [40]. Addition-
ally, we use SSP585 and SSP245 to represent two shared 
socioeconomic pathways. SSP585 represents a worst-
case climate change scenario without climate policy 
constraints, while SSP245 reflects a more realistic inter-
mediate pathway, representing global climate change 
under effective climate policy interventions [41]. We use 
Arcgis to match future climate projections under the two 
scenarios with the sample cities, both temporally and 
spatially. Then, we extract annual indicators from the 
daily observations to estimate the dynamic changes in 
climate risk. In alignment with global temperature con-
trol targets, our estimation covers the period from 2020 
to 2100, with 2020 as the baseline year, and estimates are 

Table 5  The moderating effect of URMII
Variables self_hel lncost lnselfcost
lnCR 0.032 0.025 0.919 0.401 0.717 0.526

(0.057) (0.050) (0.923) (1.032) (0.878) (0.825)
lnCR x URMII 0.013 0.009 0.990 0.748 0.859 0.468

(0.009) (0.009) (0.141) (0.605) (0.601) (0.593)
constant 2.976*** −2.078 13.77*** −86.44 13.00*** −56.90

(0.203) (3.657) ( 3.159) (124.3) (2.943) (127.9)
con_s No Yes No Yes No Yes
year Yes Yes Yes Yes Yes Yes
ind_l Yes Yes Yes Yes Yes Yes
obs 0.004 0.501 0.145 0.297 0.085 0.233
R2 1,005 1,005 1,005 1,005 1,005 1,005
*, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively. The values in parentheses are clustered robust standard errors at the city level
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made at 10-year intervals. The model for long-term esti-
mation of health costs for the middle-aged and elderly 
population is as follows (18):

	
∆Helits =

∑
j

θ1∆CRitjs/10� (18)

where, ΔHelits represents the change in medical expenses 
for individual i at time t under scenario s; ΔCRitjs repre-
sents the change in climate risk for the city of individual i 
in year j of the t-th decade under scenario s; θ1 represents 
the estimated coefficient of climate risk on the healthcare 
costs for middle-aged and elderly individuals after con-
sidering the instrumental variables, which is estimated 
using Eq. (15).

Figure  3 presents the estimated results for the aver-
age medical total medical costs (a) and out-of-pocket 
costs (b). It is evident that both out-of-pocket costs and 
total medical costs increase significantly under both the 
SSP585 and SSP245 scenarios. Specifically, under the 
SSP585 scenario, by the end of this century, per cap-
ita out-of-pocket costs and total medical costs for the 
elderly population due to climate risk are projected to 
reach 25,523 CNY and 11,171 CNY, respectively. While 
the cost increase in the SSP585 scenario may diverge sig-
nificantly from actual outcomes, it represents the worst-
case scenario for climate change. In contrast, the SSP245 
scenario, which is more realistic, shows a more moder-
ate growth in climate risk-induced medical costs for the 
elderly. By the end of the century, per capita total medical 
costs and out-of-pocket costs are projected to increase 
to 13,191 CNY and 5,882 CNY, respectively, reflect-
ing an average increase of 7 to 10 times. Furthermore, 
these results across different scenarios highlight the 
health benefits of implementing climate policies. In the 
SSP245 scenario, medical out-of-pocket and total costs 

for the elderly are reduced by nearly 50% compared to the 
SSP585 scenario.

Discussion
Our study uses survey data from the CHARLS elderly 
population and city-level indicators, employing mul-
tidimensional panel fixed effects and instrumental 
variable estimation methods. We find that the rise in 
climate risk has a significant negative impact on the self-
reported health status and medical costs of the middle-
aged and elderly population. Specifically, climate risk 
significantly increased the total hospitalization costs 
(β = 0.721, P = 0.004) and out-of-pocket hospitalization 
expenses (β = 0.706, P = 0.036) for the middle-aged and 
elderly, but had no significant impact on outpatient total 
costs (β = 0.027, P = 0.941) or out-of-pocket outpatient 
expenses (β = 0.054, P = 0.790). This suggests that the 
health damage caused by climate risk for the elderly is 
more likely to manifest as direct physiological harm. The 
potential reasons for this include two factors: First, unlike 
previous studies that use extreme heat as a proxy for cli-
mate risk, health damage caused by extreme precipitation 
and other climate events tends to result in direct physi-
cal harm rather than cumulative health damage. Second, 
elderly people, as a vulnerable group, have weakened 
physical functions and immune systems, making them 
more sensitive to changes in the external climate envi-
ronment. When extreme climate events occur, they may 
exacerbate underlying conditions such as cardiovascular 
diseases and respiratory illnesses, increasing the likeli-
hood of hospitalization and thus raising hospitalization 
costs for the elderly population [42, 43].

Unlike previous studies, our findings highlight the 
heterogeneous moderating effects of multi-tier medi-
cal insurance participation on climate risk. In China, the 
multi-tiered social health insurance system covers nearly 

Fig. 3  The long-term impact of climate risk changes on medical costs
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all groups, with an average participation rate of 95%. 
Specifically, for the elderly, participation in basic health 
insurance is a crucial safeguard for improving access to 
healthcare services. However, the household registra-
tion-based social medical insurance system also leads 
to inequalities in the utilization of medical services and 
the provision of benefits. Our estimations show that the 
inequality resulting from multi-tiered insurance partici-
pation manifests in the fact that both UEMI and URMI 
can effectively mitigate the health risks and medical 
costs associated with climate risk. However, for elderly 
people with rural household registration, participation 
in the NRCMI has not significantly alleviated the health 
damage and medical burden caused by climate risk. 
Furthermore, although the Chinese government began 
gradually promoting effective coordination of URMII at 
the provincial or municipal level in 2016, with the aim of 
reducing urban-rural disparities in healthcare utilization. 
Our estimation results indicate that the implementation 
of the URMII policy has had a limited impact in reduc-
ing health inequalities, resulting in persistent disparities 
in health and medical burdens between urban and rural 
elderly populations. According to the asset poverty the-
ory, when an individual’s asset accumulation falls below 
a certain threshold over the long term, they are at risk of 
falling into a poverty trap. The URMII serves as a redis-
tributive mechanism that compensates for the medical 
burdens faced by the elderly due to illness, providing a 
loss compensation effect. However, the increase in mor-
bidity among the elderly caused by climate risks can lead 
to a surge in medical costs. Based on these findings, we 
recommend further unifying urban and rural health 
insurance premiums and service levels, and increasing 
the reimbursement benefits for rural residents’ medical 
insurance. Specifically for the rural elderly population, 
on the one hand, improving primary healthcare services, 
promoting the establishment of urban-rural medical col-
laboration mechanisms, and accelerating the extension 
of healthcare resources to rural areas are crucial to effec-
tively addressing the health impacts of climate risks on 
rural seniors. On the other hand, implementing an adap-
tive health insurance system, exploring elderly allow-
ances, and establishing a dynamic benefits adjustment 
mechanism are essential, alongside strict control over 
irrational increases in outpatient and inpatient medical 
expenses.

Our findings also highlight the importance of imple-
menting restrictive climate policies for health benefits. 
We conducted long-term forecasts of healthcare costs 
for the elderly using two shared socioeconomic path-
ways, SSP585 and SSP245. Our results indicate that in 
both climate policy scenarios, the increase in healthcare 
costs due to climate risks is irreversible. However, in the 
SSP245 scenario, which represents a middle-of-the-road 

approach, healthcare costs for the elderly caused by cli-
mate risks are projected to be nearly 50% lower by the 
end of this century compared to the SSP585 scenario. 
This reduction in costs is significant, underscoring the 
necessity of implementing strict climate constraint poli-
cies. Therefore, given the public nature of climate risk 
changes, it is critical for governments to continuously 
develop and implement stringent climate governance 
policies, while aligning climate action with health main-
tenance objectives. However, it is important to note that 
our long-term forecast results are simple estimates based 
on linear relationships.

Our study inevitably has certain limitations. First, the 
Difference-in-Differences (DID) model provides a more 
precise assessment of the health impacts caused by cli-
mate risks. However, we ultimately chose to advance 
our study using a combination of ordinary least squares 
(OLS) and instrumental variable (IV) approaches. 
Extreme climate events typically occur in localized areas 
and are relatively short-lived, posing unavoidable chal-
lenges for causal identification using the DID model. 
Since climate risks often unfold over just a few days, such 
an analysis requires high-frequency daily data. Unfortu-
nately, most publicly available micro-level survey data 
are collected annually, making it difficult to obtain daily-
level data to support our analysis. Moreover, extreme 
climate events do not always occur consecutively, mak-
ing it challenging to maintain temporal continuity. The 
intermittent nature of climate events weakens the iden-
tification strategy in the DID model, and this lack of con-
tinuity poses challenges for estimating treatment effects. 
Second, We have not conducted an in-depth discussion 
or elaboration on the relationships between climate risk 
and health inequality, as well as between the multi-tiered 
health insurance system and health inequality. Our study 
focuses solely on examining whether participation in 
a multi-tiered health insurance system contributes to 
the inequality in health damage caused by climate risks. 
Finally, our long-term forecasts of climate risks and 
healthcare cost changes are based on linear relationships, 
which may introduce some error in the predictions. In 
reality, the relationship between climate risks and health-
care costs is often a complex nonlinear one. Our pre-
dicted results are only a simple estimate of the long-term 
relationship between climate risks and healthcare costs. 
We hope that future research will refine these predictions 
further.

Conclusion
In summary, our study reveals the negative impact of cli-
mate risks on self-rated health and healthcare costs for 
the elderly population. Moreover, under the differenti-
ated multi-tiered healthcare insurance system, the health 
impacts of climate risks show significant disparities 
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based on household registration status. We also discuss 
the long-term impacts of climate risks, highlighting the 
significant health benefits of implementing climate poli-
cies. Our study provides insights into mitigating the 
health impacts of climate risks on the elderly and reduc-
ing the inequalities arising from the multi-tiered health-
care insurance system.
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